The First Tale
Adiabatic Pendulum and Semi-classical Approxi-
mation.

1. The string of a pendulum is gently pulled up, so that its length
changes adiabatically. How does the amplitude of oscillations depend
on time? The answer could be found in analogy with the basic problem
of quantum mechanics. Indeed, the equation of motion

d’z 9
has the form, which is very similar to the Schroedinger equation
W'+ 2[E-U(r)ly =0 (2)

The adiabatic condition means that the frequency w(t) changes over
the period of oscillations by a small fraction of w. In other words,
w/w <K w, or w <K w?.

This condition applied to the potential U(r) in Eq. (2) means that
U(r) obeys the semi-classical condition. Therefore, it is convenient to

Figure 1: Adiabatic pendulum
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look for the solution of Eq. (1) in the form
z(t) = Reexp[iS] = Rey

where
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In the leading approximation we can neglect S”, which is smaller than
(S)%. Hence, representing S(t) as

S(t) =51+ S5, 51> 5, (3)
we get from Eqgs. (1) and (2)

(S)?= (),  Si== [ dtw(t). (4)
In the next approximation
2518, +iS7 =0 2uw(t)S), =/ (). (5)
Therefore,
Cy

exp

t
t) = +i [ dt'w(t’ ] 6
vt = i [ dtw(t) (6)
where C. are arbitrary constants. and

w(—00)
w(t)
The last expression allows to calculate the mean value of the kinetic

energy

2(t) = 2(—o0) cos [ [ dtw()]. (7)
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The mean value of the potential energy
2
<U>= % <z?> (9)

is exactly equal to < T > (the virial theorem). Thus, the total energy
E =T + U changes in time as

Et)=w’ <2’ >= AN LA



This means that the quantity

E(t
0
w(t)
is approximately constant and does not change if dw/dt < w?. As for
the amplitude of the oscillations, it changes as

2F 21 1
rmax(t) = \ij(t) = \lw(t) X o) (11)

The result looks astonishing, because it means that our classical sys-
tem "knows” that it can be considered a quantum oscillator, which
has the quantum number n = E/Aw. Under adiabatic variation of
the oscillation frequency, this quantum number does not change, w-
hich corresponds to the conservation of I in the classical motion. The

conservation is, certainly, approximate and in the next section we will
consider it more thoroughly.

2. The main defect of our reasoning is that the wave function (t)
corresponds to a wave, running, say, only from left to right without
any reflection. It is an artifact of the semi-classical approximation.
The general solution contains a nonzero reflection amplitude and has
the form

p(t) =

1 Tzf t’dt’ t = —o0,
{ " e o0 (12)

w(t) ()t § Re=i['w)dt' ¢ = foo,

where T and R are the transmission and reflection coeflicients respec-
tively. This form is slightly unusual, because we have swapped the
left and right sides on the real axis around, but it suits our purposes
better. In the semi-classical approximation R = 0, which means that
R< 1. Asaresult |T| =1 and T = €. If the function (12) is used
to determine the adiabatic invariant I = E(t)/w(t), then

2(t) = Re (t)

. cos [[Tw(t)dt], t=—
- cos [[Tw(t')dt'] + Re Rcos [[fw(t')dt'] (13)
W{t) | 4Im Rsin[Jf w(t')d?] t = +oo
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and

E(t) = w?(t) < 2%(t) >=
1 t=—o00

= F(— ’ 14
( wM“%(LH%RV+OmRﬂt=+w (14)
Thus, in the leading approximation, R < 1, we have
Al = 2IReR. (15)
Consider now a specific example of the frequency time dependence:
2 2 2 ot
w(t) = wy + wy —/—, 16
( ) 0 1 m ( )
where
a << wp < wy. (17)
Then the frequency
w(t) = Jw(t) = Jw% + w%a—t (18)
V14 a?t?
as a function of complex time ¢ has a zero at t = t,,
t, =40 (19)

@ \Jw + wi

Near the complex turning point

) 1/2
_ %a(wé +w%)3/2(t — t*) / i 042((.08 _I_w%)g 1/4 U
w(t) = w1 =e 2 (t—t.)

(20)

and the action S(t) is equal to

CV2
wZ
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1/4
<w§+w%>3] (-t ()

Therefore, Im S(¢) = 0 along the dashed lines in Fig 2. These so cal-
led Stokes lines are very important, since the exponential exp[iS(?)]
changes the character of its variation after crossing these lines, i.e. a
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Figure 2: Plane of complex time ¢. Contours of integrations are denoted I and 1T as
discribe in text. Branch cut originate from the turning point t,.

growing exponential becomes a decaying one and vice versa. In the
triangle, formed by two Stokes lines and the real axis, ImS(¢) > 0 .
Thus, the solution of the Schroedinger equation contains the integral
J dtw(t) which is taken along the real axis and can be deformed without
crossing the Stokes lines to prevent exponentially growing contribu-
tions. One can see from the Fig.2, that the contour I and all equivalent
contours give a zero reflection amplitude, while the contours like the
contour I give finite R, since S(t) changes its sign, going around the
turning point ¢,. Thus,

Rocexpl2 [ dt w(t)] =exp[-2 [ dr Imw(ir)].  (22)

The result is equal, with exponential precision, to exp[—€)/a], where
Q o wr, ws.

3. Consider the generalization of the problem of the adiabatic
pendulum to the case of two coupled pendulums. The equations of
their motion have the form

d*z

=~ = Bla — )



Figure 3: Coupled pendulae
d?y
dt?

At any current time ¢ this coupled system has instantaneous frequency
Q2(t), which obeys the equation

‘ Q2 —-w?t)—-pB B

= —wiy + Bz —y)

det) g uw2t) - g

-o (23)
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Two branches of the square root correspond to two different normal
modes of the system. The time dependences of the frequencies is
shown in Fig 3. If w? > 3, the two modes are strongly separated
everywhere, except near the intersection. This means that if at ¢ —
—oo only the pendulum with the variable string oscillates, then at
t — 400, when it stops, all the energy of its oscillation goes to the
other pendulum. The mixing of the modes due to a weak violation
of the adiabatic condition is called, in this case, the Landau-Zener
breakdown.




Figure 4: Eigen-frequencies of coupled pendulae



