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What is mesoscopic

physics?

1. Interference\tunneling effects in a solid.

2. These effects usually occur at 

intermediate scales and at relatively low 

temperatures. 

3. Disorder plays a role in most materials.  

1. Reveals universal features of quantum 
Why is mesoscopic

physics interesting?

Are 4+1 lectures 

enough?

1. Reveals universal features of quantum 

physics.

2. Continuation of quantum mechanics. 

3. Technological  applications.

Problems are easy to understand but 

difficult to solve rigorously.



Lecture I: From Anderson to Anderson: perturbative

formalism and scaling theory of localization

1. Intuition about quantum dynamics in a 

disordered potential. Anderson localization

2. Theories of localization: Locator expansions

a. Anderson 1957: “Absence of diffusion in certain 

random lattices”

b. Anderson, Abou-Chacra, Thouless, 1973: “A self-

consistent theory of localization” 

3. Abrahms, Anderson, et al., 1979: “Scaling 

theory of localization”

2. Theories of localization: Locator expansions



Your intuition about localizationYour intuition about localizationYour intuition about localizationYour intuition about localization
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Theories of localization

Locator expansionsLocator expansions

One parameter scaling theory



Tight binding model

What if I place a particle in a random potential and wait?

6203 citations!

1. (Locator) expansion around V=0

2. Probability distribution needed 

3. At V=Vc perturbation breaks down → Metal



=0 Metal

Increase V until 

perturbation 

theory breaks 

down

= ∞ Metal



However:
1. Problem with small denominators

2. Uncorrelated paths?

V > V V < V

Correctly predicts a metal-insulator transition in 3d and 
localization in 1d

Interactions?

Disbelief?,  
against band 

theory

But my recollection is that, on the whole, But my recollection is that, on the whole, 
the attitude was one of humoring me.the attitude was one of humoring me.

V > Vc V < Vc



No control on the approximation.No control on the approximation.No control on the approximation.No control on the approximation.No control on the approximation.No control on the approximation.No control on the approximation.No control on the approximation.

It should be a good approx for d>>2. It should be a good approx for d>>2. It should be a good approx for d>>2. It should be a good approx for d>>2. It should be a good approx for d>>2. It should be a good approx for d>>2. It should be a good approx for d>>2. It should be a good approx for d>>2. 

It predicts correctly localization in 1d and a It predicts correctly localization in 1d and a It predicts correctly localization in 1d and a It predicts correctly localization in 1d and a It predicts correctly localization in 1d and a It predicts correctly localization in 1d and a It predicts correctly localization in 1d and a It predicts correctly localization in 1d and a 

Perturbation theory around the Perturbation theory around the Perturbation theory around the Perturbation theory around the Perturbation theory around the Perturbation theory around the Perturbation theory around the Perturbation theory around the 

insulator limit (locator expansion). insulator limit (locator expansion). insulator limit (locator expansion). insulator limit (locator expansion). insulator limit (locator expansion). insulator limit (locator expansion). insulator limit (locator expansion). insulator limit (locator expansion). 

250 citations

It predicts correctly localization in 1d and a It predicts correctly localization in 1d and a It predicts correctly localization in 1d and a It predicts correctly localization in 1d and a It predicts correctly localization in 1d and a It predicts correctly localization in 1d and a It predicts correctly localization in 1d and a It predicts correctly localization in 1d and a 

transition in 3dtransition in 3dtransition in 3dtransition in 3dtransition in 3dtransition in 3dtransition in 3dtransition in 3d

= 0
metal

insulator

> 0

metal

insulator

∼ η

The distribution of the self energy SThe distribution of the self energy SThe distribution of the self energy SThe distribution of the self energy SThe distribution of the self energy SThe distribution of the self energy SThe distribution of the self energy SThe distribution of the self energy S
iiiiiiii
(E) is (E) is (E) is (E) is (E) is (E) is (E) is (E) is 

sensitive to localization.sensitive to localization.sensitive to localization.sensitive to localization.sensitive to localization.sensitive to localization.sensitive to localization.sensitive to localization.
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Solution only provided that 

the  homogenous equation 

has solutions with λ ≥ 1

We need probabilities We need probabilities 

distributions!!

k1 k2 Fourier transform of Ei , ∆i

Neglect Ei, s ↔ k1

Guess



Accurate 

for for 

d >> 1



1. “Absence of diffusion in the Anderson tight binding model for 

large disorder or low energy”

Localization in mathematics 

literature

Rigorous proof of localization for 

strong disorder

large disorder or low energy”

Jürg Fröhlich and Thomas Spencer, Comm. Math. Phys. 88, 

151 (1983).

2. “Localization at Large Disorder and at Extreme Energies: an 

Elementary Derivation.”

M. Aizenman, S. Molchanov, Comm. Math. Phys. 157, 245 

(1993).



Experiments



State of the art:State of the art:

d = 1d = 1d = 1d = 1 An insulator for any disorder

d =2d =2d =2d =2 An insulator for any disorder

d > 2d > 2d > 2d > 2 Localization only for disorder  

strong enough

Why?Why?Why?Why?Why?Why?Why?Why?
Metal Insulator Metal Insulator Metal Insulator Metal Insulator Metal Insulator Metal Insulator Metal Insulator Metal Insulator 

TransitionTransitionTransitionTransitionTransitionTransitionTransitionTransitionEEEE

ρρρρ

strong enough

Still not well 
understood



Perturbative locator expansion50’

60’

70’

Anderson localization

Self consistent 
condition

Abou Chakra, Anderson, Thouless

Anderson

Weak  localization Larkin, Khmelnitskii, Altshuler, Lee…

1d Kotani, Pastur, Molchanov, Sinai, Jitomirskaya

Scaling theory    Scaling theory    

Field theory, RMT

Computers!

70’

80’

90’

00’
Experiments!

Thouless, Wegner, Gang of four, Frolich, 

Spencer, Molchanov, Aizenman

Efetov, Wegner

Aoki, Schreiber, Kramer

Aspect, Fallani, Segev

Weak  localization Larkin, Khmelnitskii, Altshuler, Lee…

Metal-Insulator Efetov, Fyodorov, Mirlin, Vollhardt



1. Mean level spacing δδδδ        ∝∝∝∝ L -d

δδδδ L = system size;

D = diffusion constant

δδδδ = mean- level spacing

L

Scaling ideas (Thouless, 1972)

2. Thouless energy ET = hD/L2

. 

ET = inverse diffusion 

time ~ sensitivity of the 

spectrum to change of 

boundary conditions 
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Ohm’s Law 

for a cubic sample 
of the size L

Electric conductivity

Dimensionless Conductance Dimensionless 
conductance

Conductance

Experiments OK



L = 2L = 4L = 8L ....
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Scaling theory of Scaling theory of 
localizationlocalization

The change in the 
conductance with the 
system size only depends 
on the conductance itself)(gβ
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( )g
Ld

gd
β=

log

log

β(g)

g

3D
1

1≈g

unstable
fixed point

Lecture II: “Weak localization:  the 

Russians, the cold war and experiments”

g
2D

1D-1

1≈cg

Metal – insulator transition in 3D
All states are localized for d=1,2

Is this 
true?



NO, Patrick Lee, PRL 42,1492 (1979)

Scaling theory is wrong

Metal-Insulator transition in d=2!

No metallic states in 2d. Scaling theory of 

localization is right!
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Usually negligible but there are exceptions...



Constructive interference between clockwise and counter clockwise Constructive interference between clockwise and counter clockwise Constructive interference between clockwise and counter clockwise Constructive interference between clockwise and counter clockwise 

enhances return probability to B but enhances return probability to B but enhances return probability to B but enhances return probability to B but suppressssuppressssuppressssuppresss the AC probability. the AC probability. the AC probability. the AC probability. 

Weak localization 

BA
C

?

enhances return probability to B but enhances return probability to B but enhances return probability to B but enhances return probability to B but suppressssuppressssuppressssuppresss the AC probability. the AC probability. the AC probability. the AC probability. 

Langer and Neel PRL  16, 984 (1966).Langer and Neel PRL  16, 984 (1966).Langer and Neel PRL  16, 984 (1966).Langer and Neel PRL  16, 984 (1966).

Negative correction to 
G of a metal at low T

?
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Decoherence/

dephasing

time

Thouless

time 
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Conductivity: 

The rigorous 

way 

U = Irreducible vertex

Expansion 
parameter

U = Irreducible vertex



Conductivity: 

The rigorous way We must  sum 

geometrical series of 

maximally crossed 

diagrams



Dolan, Osherhoff, PRL 43, 721 (1979)

Resistance of thin metallic stripes 

increases as T decreases

Experimental results also support scaling 

theory of localization



Φ

Magnetic field/flux

O O

Figures from B. 
Altshuler Boulder 

Lectures

No magnetic field 
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1. H suppresses weak localization

2. Oscillations in the conductance  



Negative 
Magnetoresistance 

Chentsov

(1949)

PRB 21, 5142 (1980)

Ref. 3



Bohm-Aharonov- effect

Theory 
Altshuler, Aronov, Spivak (1981)

Experiment 
Sharvin & Sharvin (1981)

Select exp only 
those paths whose those paths whose 
associated flux is 
the same

Thin metallic 

cylinders Ref. 3
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Weak anti localization?



Spin-Orbit interactions and 

anti-localization correction

HikamiLarkin

Ref. 3

α = 0,1,-1



Disorder + 

Interactions

Altshuler Aronov Lee



Summary:

Boltzmann PictureWeakly localization

n integer > 2  (=2 for e-e collisions)
A>0

Both n and A can 

have any sign

σ(H) can be oscillatory σ(H) monotonous 



Ref. 3

Ref. 2

Ref. 3



g >> 1... Universal properties?g >> 1... Universal properties?

Wigner-Dyson statistics?

?



Universality

Disordered 

Systems

Quantum  

Chaos

g >> 1

g = gc

Classically chaotic 

motion

Lecture III

Random Matrix theory

Nuclear 

Physics
QCD

High energy 

excitations

Infrared spectrum Dirac 

operator



Field theory approach to 

disorder systems Denominator 

problem 

1982-84: Grassmannian

variables can help

Universality I

variables can help

Disorder 

Is integrated!!



Disordered system  Effective Field theory 

Density of probability 

that 2 eigenvalues are 

separated by ω
Efetov

Larkin

Wegner

Khmelnitskii

Q ~ ΦΦt 

∇Q≈0  Universal regime

s = ω/∆

RANDOM 

MATRiX

THEORY
Efetov:Supersymmetry in disorder and chaos



Random Random Random Random 

Matrix Matrix Matrix Matrix 

Spectral
Properties                          
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Uncorrelated 
spectrum (Poisson) 
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Não é possível apresentar a imagem. O computador pode não ter memória suficiente para abrir a imagem ou a imagem pode ter sido danificada. Reinicie o computador e, em seguida, abra o ficheiro novamente. Se o x vermelho continuar a aparecer, poderá ter de eliminar a imagem e inseri-la novamente.

Nuclear excitations 

P(s)

Bohr 1936

Shell model 
not feasible

A statistical 
approach?

Universality II

[ ]( )∑ −−= +
i

ii EEssP δδ /)( 1

P(s)

s

not feasible
approach?
Maybe Bohr  
was right 

( )
2

Asβ
es~sP

−



BohigasBohigasBohigasBohigas----GiannoniGiannoniGiannoniGiannoni----SchmitSchmitSchmitSchmit

conjectureconjectureconjectureconjecture

Classical chaos                            Wigner-Dyson

Universality III Quantum chaos

Phys. Rev. Lett. 52, 1 (1984)

Classical chaos                            Wigner-Dyson

Momentum is not a good quantum number                             Delocalization      Momentum is not a good quantum number                             Delocalization      Momentum is not a good quantum number                             Delocalization      Momentum is not a good quantum number                             Delocalization      

Energy is the only integral of motion



GutzwillerGutzwillerGutzwillerGutzwillerGutzwillerGutzwillerGutzwillerGutzwiller--------BerryBerryBerryBerryBerryBerryBerryBerry--------Tabor conjectureTabor conjectureTabor conjectureTabor conjectureTabor conjectureTabor conjectureTabor conjectureTabor conjecture

Poisson Poisson Poisson Poisson Poisson Poisson Poisson Poisson 

statisticsstatisticsstatisticsstatisticsstatisticsstatisticsstatisticsstatistics

(Insulator(Insulator(Insulator(Insulator(Insulator(Insulator(Insulator(Insulator))

Integrable 
classical 
motion

Integrability

ssss

P(s)P(s)P(s)P(s)

Canonical Canonical Canonical Canonical Canonical Canonical Canonical Canonical momentamomentamomentamomentamomentamomentamomentamomenta

are conservedare conservedare conservedare conservedare conservedare conservedare conservedare conserved

System is localized in momentum System is localized in momentum System is localized in momentum System is localized in momentum System is localized in momentum System is localized in momentum System is localized in momentum System is localized in momentum 

spacespacespacespacespacespacespacespace



Lecture IV

Mesoscopic Physics beyond condensed 

matter

QCD vacuum as a disordered medium

matter



Inside the Nucleus: What holds the matter 
together? 

Quarks 

Color charge RED, BLUE, GREEN

Stable matter:  u,d, 3-10MeV

Electric Charge 2/3,1/3Electric Charge 2/3,1/3

Interact by exchanging gluons

Hadrons are colorless

Strong color forces govern the interaction Strong color forces govern the interaction 
among quarks. The relativistic quantum among quarks. The relativistic quantum 
field theory to describe quark interactions is field theory to describe quark interactions is 
quantum chromodynamics (QCD).quantum chromodynamics (QCD).



A two minute course on non A two minute course on non 
perturbative QCDperturbative QCD

State of the art

T = 0                                 T = 0                                 
low energylow energy

What?What? How? How? 

1. Lattice QCD

2. Instantons….

Chiral Symmetry   
breaking and 
Confinement

T = TT = Tcc

Chiral and 
deconfinement 

transition

Universality              
(Wilczek and Pisarski)

T  > TT  > Tcc Quark- gluon plasma

QCD non perturbative!

AdS-CFT

N =4 Yang Mills



QCD at T=0, instantons and chiral symmetry breaking
tHooft, Polyakov, Callan, Gross, Shuryak, tHooft, Polyakov, Callan, Gross, Shuryak, Diakonov, Petrov,VanBaalDiakonov, Petrov,VanBaal
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Instantons: Non perturbative solutions of the  Yang 
Mills equations
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1. Dirac operator has a zero mode 
2. The smallest eigenvalues of the Dirac operator are 

controlled by instantons

ψψ Order parameter  symmetry breaking



QCD vacuum as a conductor (T =0)QCD vacuum as a conductor (T =0)

Metal:Metal:Metal:Metal:Metal:Metal:Metal:Metal: An electron initially bounded to a single atom gets An electron initially bounded to a single atom gets 

delocalized due to the overlapping with nearest neighborsdelocalized due to the overlapping with nearest neighbors

QCD  Vacuum:QCD  Vacuum:QCD  Vacuum:QCD  Vacuum:QCD  Vacuum:QCD  Vacuum:QCD  Vacuum:QCD  Vacuum: Zero modes Zero modes get get delocalized due to the delocalized due to the 

overlapping with  the rest of zero modes. overlapping with  the rest of zero modes. ((DiakonovDiakonov and and PetrovPetrov))

Disorder:  Disorder:  Exponential decay                     Exponential decay                     
QCD vacuum: Power law decay   QCD vacuum: Power law decay   

DifferencesDifferences



QCD vacuum as a disordered conductorQCD vacuum as a disordered conductor

InstantonInstantonInstantonInstantonInstantonInstantonInstantonInstanton positions and color orientations varypositions and color orientations varypositions and color orientations varypositions and color orientations varypositions and color orientations varypositions and color orientations varypositions and color orientations varypositions and color orientations vary

Diakonov, Petrov, Verbaarschot, Osborn,  Shuryak, Zahed,Janik

Ion             Ion             Ion             Ion             Ion             Ion             Ion             Ion             InstantonsInstantonsInstantonsInstantonsInstantonsInstantonsInstantonsInstantons

T = 0     TT = 0     TIAIA~ 1/R~ 1/Rαα, , αα = 3<4= 3<4

Shuryak,VerbaarschotShuryak,Verbaarschot

Conductor.  RMT applies ?Conductor.  RMT applies ?

Electron           Electron           QuarksQuarks

T>0   TT>0   TIAIA~ e~ e--R/l(T)R/l(T)

A transition is possibleA transition is possible



Universality 

E < Ec(L)

QCD Dirac 

operator 

Chiral random 

matrix model

Shuryak, Verbaarshot

1993



Deconfinement  and chiral  restorationDeconfinement  and chiral  restoration

Deconfinement: Confining potential vanishes:

Chiral Restoration: Matter becomes light:

How to explain these transitions?

1. Effective, simple, model of QCD close to the phase 
transition (Wilczek,Pisarski,Yaffe):  Universality.

2. Classical QCD solutions (t'Hooft): Instantons (chiral),  
Monopoles and vortices (confinement). 



nnn

QCD
iD ψλψγ µ

µ =

At the same Tc that the 
Chiral Phase transition

with J. Osborn

Phys.Rev. D75 (2007) 034503

Nucl.Phys. A770 (2006) 141

QCD Dirac 
operator µµ

QCD

gA+=D ∂
µ

0≈ψψ

At the same Tc that the 
Chiral Phase transition

A metalA metal--insulator transition in the Dirac operator insulator transition in the Dirac operator 
induces the QCD chiral phase transitioninduces the QCD chiral phase transition





n

n

ψ

λ
undergo a metal metal -- insulatorinsulator transition



1. Eigenvector statistics:

2. Eigenvalue statistics:
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ILM, close to the origin, 2+1 ILM, close to the origin, 2+1 
flavors, N = 200flavors, N = 200

Metal Metal 
insulator insulator 
transitiontransition



ILM with 2+1 massless flavors, Spectrum is Spectrum is Spectrum is Spectrum is 

scale scale scale scale 

invariant invariant invariant invariant 

We have observed a metal-insulator transition at T ~ 125 Mev



Instanton liquid model Nf=2, maslessInstanton liquid model Nf=2, maslessLocalization versus Localization versus 
chiral transitionchiral transition

Chiral and localizzation transition occurs at the same temperatureChiral and localizzation transition occurs at the same temperature



g = gc

Lecture V

Metal Insulator transitions

New Window of universality

Lecture V



Critical 
Metal

Insulator

Kramer 

et al. 

1999

Typical 

Multifractal

eigenstate



Signatures of a metal-insulator transition

Skolovski, Shapiro, Altshuler,90’s
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1.  Scale invariance of the spectral correlations.   
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223. Eigenstates are multifractals

4. Difussion is anomalous 



1.Cooperons (Langer1.Cooperons (Langer1.Cooperons (Langer1.Cooperons (Langer----Neal, maximally crossed, responsible for weak localization)  Neal, maximally crossed, responsible for weak localization)  Neal, maximally crossed, responsible for weak localization)  Neal, maximally crossed, responsible for weak localization)  

and and and and DiffusonsDiffusonsDiffusonsDiffusons (no localization, (no localization, (no localization, (no localization, semiclassicalsemiclassicalsemiclassicalsemiclassical) can be combined.) can be combined.) can be combined.) can be combined.

Self consistent approach to the transition                                     
(Wolfle-Volhardt, Imry, Shapiro)

1.Cooperons (Langer1.Cooperons (Langer1.Cooperons (Langer1.Cooperons (Langer----Neal, maximally crossed, responsible for weak localization)  Neal, maximally crossed, responsible for weak localization)  Neal, maximally crossed, responsible for weak localization)  Neal, maximally crossed, responsible for weak localization)  

and and and and DiffusonsDiffusonsDiffusonsDiffusons (no localization, (no localization, (no localization, (no localization, semiclassicalsemiclassicalsemiclassicalsemiclassical) can be combined.) can be combined.) can be combined.) can be combined.

3. Accurate in d ~23. Accurate in d ~23. Accurate in d ~23. Accurate in d ~2....

No control on the approximation!



Predictions of the self consistent Predictions of the self consistent Predictions of the self consistent Predictions of the self consistent Predictions of the self consistent Predictions of the self consistent Predictions of the self consistent Predictions of the self consistent 

theory at the transitiontheory at the transitiontheory at the transitiontheory at the transitiontheory at the transitiontheory at the transitiontheory at the transitiontheory at the transition

νξ ξψ −− −∝ |||)(| /

c

r
EEer p

42/1

4
2

1

>=

<=
−

d

d
d

ν

ν

1. Critical exponents:1. Critical exponents:1. Critical exponents:1. Critical exponents:

Vollhardt, Wolfle,1982
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42/1 >= dν

2. Transition for d>22. Transition for d>22. Transition for d>22. Transition for d>2

3. Correct for d ~ 2

Disagreement with 
numerical simulations!!

Why?



1. Always perturbative around the metallic 1. Always perturbative around the metallic 

(Vollhardt & Wolfle) or the insulator state (Vollhardt & Wolfle) or the insulator state 

(Anderson, Abou Chacra, Thouless) .(Anderson, Abou Chacra, Thouless) .

A new basis for localization is neededA new basis for localization is needed

Why do self consistent Why do self consistent Why do self consistent Why do self consistent Why do self consistent Why do self consistent Why do self consistent Why do self consistent 
methods fail for d methods fail for d methods fail for d methods fail for d methods fail for d methods fail for d methods fail for d methods fail for d ======== 3?3?3?3?3?3?3?3?

A new basis for localization is neededA new basis for localization is needed
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2. Anomalous diffusion at the transition 2. Anomalous diffusion at the transition 

(predicted by the scaling theory) is not (predicted by the scaling theory) is not 

taken into account.taken into account.



Analytical results combining the scaling theory 
and the self consistent condition.

Critical exponents, critical disorder, level statistics.



Technical details: 

Critical exponents

The critical exponent ν, can be obtained by solving the The critical exponent ν, can be obtained by solving the 

above equation for                     with D (ω) = 0.above equation for                     with D (ω) = 0.
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Comparison with 

numerical results
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